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Abstract

Accurate determination of rooting depths in terrestrial biosphere models is important for 

simulating terrestrial water and carbon cycles. In this study, we developed a method for 

optimizing rooting depth using satellite-based evapotranspiration (ET) seasonality and an 

ecosystem model by minimizing the differences between satellite-based and simulated ET. We 

then analyzed the impacts of rooting depth optimization on the simulated ET and gross primary 

production (GPP) seasonality in California, USA. First, we conducted a point-based evaluation 

of the methods against flux observations in California and tested the sensitivities of the simulated 

ET seasonality to the rooting depth settings. We then extended it spatially by estimating spatial 

patterns of rooting depth and analyzing the sensitivities of the simulated ET and GPP 
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seasonalities to the rooting depth settings. We found large differences in the optimized and soil 

survey (STATSGO)-based rooting depths over the northern forest regions. In these regions, the 

deep rooting depths (> 3 m) estimated in the study successfully reproduced the satellite-based ET 

seasonality, which peaks in summer, whereas the STATSGO-based rooting depth (< 1.5 m) 

failed to sustain a high ET in summer. The rooting depth refinement also has large effects on 

simulated GPP; the annual GPP in these regions is increased by 50-100% due to sufficient soil 

water during the summer. In the grassy and shrubby regions of central and southern California, 

the estimated rooting depths are similar to those of STATSGO, probably due to the shallow 

rooting depth in these ecosystems. Our analysis suggests that setting a rooting depth is important 

for terrestrial ecosystem modeling and that satellite-based data could help both to estimate the 

spatial variability of rooting depths and to improve water and carbon cycle modeling.

1. Introduction

Accurate modeling of the soil water balance and evapotranspiration is essential for 

analyzing hydrological processes, water management, and carbon cycles in terrestrial 

environments. Soil water balance, which is determined by various water cycle processes, such as 

precipitation, snowfall, snowmelt, evaporation, transpiration, infiltration, and runoff, influences 

precipitation, temperature, and atmospheric circulation through the release of latent heat flux 

(e.g., Koster et al., 2004; Huang et al., 1996). Photosynthesis and heterotrophic respiration are 

also affected by soil water availabilities through stomatal conductance closure (e.g., Ball et al., 

1988) and water availability for microbes (e.g., Andren and Paustian, 1987), which, in turn,

affects the terrestrial carbon budget (e.g., Nemani et al., 2002). The accuracy of soil-water 

simulations also impacts climate forecasting capabilities (e.g., Huang et al., 1996; Yang et al., 

2004; Alfaro et al., 2006).
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Because evapotranspiration (ET) is a major component of the terrestrial water and energy 

cycles, its accurate modeling is essential for soil-water modeling. The accuracy largely depends 

on model structure and parameters (Guswa et al., 2002), meteorological data (e.g., White and 

Nemani, 2004; Rawlins et al., 2006), vegetation phenology (e.g., White and Nemani, 2004; 

Buermann et al., 2001), and below-ground properties (e.g., soil texture and rooting depth) 

(Lathop et al., 1995; Kleidon and Heimann, 1998). Among these below-ground factors, 

evaluation of rooting depth is particularly essential because it is the primary determinant of the 

maximum plant available water in the rooting zone and it affects vegetation productivity through 

water stress during the dry season; however, rooting depth is very difficult to observe or 

determine. Although rooting depth can be determined via soil surveys, several studies have 

pointed out that soil survey-based values underestimate the true depth because a small number of 

deep roots could have a significant role in water uptake in dry seasons, yet may easily be 

ignored. Indeed, some studies have highlighted the existence of deep rooting systems in 

seasonally water-limited ecosystems (e.g., Nepstad et al., 1994; Canadell et al., 1996; Schenk 

and Jackson, 2002; Schenk and Jackson, 2005) and have noted the importance of their inclusion 

in models for the accurate simulation of the carbon and water cycles (Kleidon and Heimann, 

1998; Ichii et al., 2007). Several studies have inferred rooting depth by finding the depth that 

achieves maximum net primary productivity (NPP) (Kleidon and Heimann, 1998) or that 

maximizes the correlation of modeled GPP and the satellite-based vegetation index seasonality 

(Ichii et al., 2007). However, none of these studies used actual observations (e.g., observed ET) 

to determine rooting depth.

Another difficulty with soil water and evapotranspiration modeling is the lack of 

sufficient observations to provide the information necessary to constrain the model parameters
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(e.g., Zhu and Liang, 2005). However, recent advances in satellite observations provide an 

opportunity to monitor spatio-temporal patterns in terrestrial water cycles, enabling spatial 

patterns of ET to be obtained with sufficient accuracy (e.g., Nishida et al., 2003; Yang et al., 

2006; Zhang and Wegehenkel, 2006). These seasonal variations have the potential to be used to 

constrain the model. 

The purpose of this study is to refine the rooting depth data in the terrestrial biosphere 

model using satellite-based ET seasonality to improve the modeling capability for simulating 

both water and carbon cycle seasonality in California. We used the Terrestrial Observation and 

Prediction System (TOPS) (Nemani et al., 2003) as an ecosystem model and we used a support 

vector machine (SVM)-based ET estimation (Yang et al., 2006) as a satellite-based ET. First, 

TOPS was used to estimate rooting depths, and we tested the sensitivities of the simulated ET 

seasonality to the rooting depth settings at flux sites in California. The analysis was then 

extended spatially, and we analyzed the sensitivities of the simulated ET and GPP seasonalities 

to the rooting depth setting.

2. Data & Method

2.1. Study Area

We focused our analysis on California, USA (Figure 1). California is mostly 

characterized by a Mediterranean climate with a dry season in summer (e.g., April to September 

and March to October in the northern and southern regions, respectively) and a wet season in 

winter (e.g., December to February) (Figure 2). Land cover patterns follow the precipitation 

patterns, with evergreen needleleaf forests over northern California in the high-precipitation 

regions, cropland and savanna in the central valley, and open shrubland that has little 
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precipitation in the southern regions. The middle to southern coastal regions are characterized by 

higher precipitation than the inland areas. 

2.2. Models

2.2.1. Satellite data-based ET

We used a machine learning technique for regressions to obtain spatio-temporal ET 

variations as described by Yang et al. (2006). The method is based on the regression-type 

support vector machine (SVM), which transforms a nonlinear regression into a linear regression 

by mapping the original low-dimensional input space to a higher-dimensional feature space using 

kernel functions (e.g., Vapnik et al., 1998; Cristianini and Shawe-Taylor, 2000), with inputs of 

satellite-based incoming surface solar radiation (Rad), land surface temperature (LST), enhanced 

vegetation index (EVI), and land cover (Yang et al., 2006). The method was assessed at more 

than 20 Ameriflux sites over the continental United States, and the method was extended 

spatially using satellite data. The method was determined to be effective for predicting spatio-

temporal ET patterns with acceptable accuracy (e.g., R2 = 0.75 and root mean square error 

(RMSE) = 0.62 mmH2O/day; Yang et al., 2006).

The SVM analysis consists of three main steps for model tuning and testing. First, the 

SVM model parameters (C: cost of errors, ε: width of an insensitive error band, and σ: kernel 

parameter) were obtained from a training set. Second, with the obtained parameters for the model 

structure, we trained the model. Last, we evaluated the model based on a test set. More details 

regarding the methods are described in Yang et al. (2006). After evaluation, the model was 

employed to obtain spatio-temporal variations of ET in California using satellite-based data. 

Eight-day ET averages were estimated for both point and spatial analyses in every experiment. 
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The data used for the SVM model came from flux sites in the western United States (Table 1 and 

section 3.1).

2.2.2. Terrestrial water/carbon cycle model

We used TOPS to simulate the daily water and carbon cycle processes (Nemani et al., 

2003; White and Nemani, 2004). TOPS integrates satellite data, ecosystem modeling, and static 

land cover and soil information to simulate ecosystem status. Simulations of hydrologic states 

and fluxes are based largely on the Biome-BGC model (Thornton, 1998; Thornton et al., 2002) 

with the use of the remotely sensed leaf area index (LAI). Calculation of GPP is based on a 

production efficiency model (PEM) approach. Here, we provide a summary of the water cycle 

and GPP models in TOPS; details are described in White and Nemani (2004) and Ichii et al. 

(2008).

Daily water budgets are calculated as the net flux of rainfall, snowfall, evapotranspiration 

(ET is the sum of transpiration, soil evaporation, canopy water evaporation, and snow 

sublimation), snowmelt, and runoff. The snow model draws from a physically based energy 

balance model (Ichii et al., 2008). ET is calculated based on a Penman-Monteith approach using 

LAI and meteorology. Stomatal conductance, the primary determinant of transpiration, is 

formulated empirically (Jarvis, 1976) with maximum stomatal conductance and temperature, 

vapor pressure deficit (VPD), radiation, and soil water limitation factors. Soil water content 

affects stomatal conductance through changes in leaf water potential and is expressed as the 

balance between the inputs (snowmelt and precipitation) and outputs (ET and runoff). Soil water 

in excess of the soil water holding capacity is routed to runoff.

Daily GPP is calculated based on a PEM approach:



7 / 31

GPP = εmax · APAR · f(environment) (1)

where εmax is the maximum light use efficiency, APAR is the absorbed photosynthetically active 

radiation, calculated as the product of photosynthetically active radiation (PAR) and FPAR (the 

fraction of PAR absorbed by plant canopies), and f(environment) is an environmental stress 

scalar set as the minimum limitation of daily minimum temperature, VPD, and soil water. The 

environmental stress scalar in each limitation factor ranges linearly from 0 (total inhibition of 

photosynthesis) to 1 (no inhibition) and is defined in the same way as the stomatal conductance 

modeling.

We changed the formulations of soil water effects on stomatal conductance and GPP in 

this study. Although the original model used the soil water potential converted from the 

volumetric water content in the soil layer to reduce the stomatal conductance and GPP, we used 

the volumetric water content instead. This modification slightly improved the RMSEs between 

the modeled and satellite-based ET seasonality. The volumetric water contents that correspond to 

the wilting point of soil (-1.5 MPa) and the start of conductance closure (set as -0.1 MPa; Table 

2) are used to linearly reduce stomatal conductance as a water stress.

We briefly describe the effects of rooting depth on ET and GPP in the model. The setting 

of the rooting depth determines the vertical extent of the soil water storage accessible to plants; 

i.e., a deep rooting depth increases the soil water holding capacity. Soil water content is 

calculated by the water balance of precipitation, evapotranspiration, and runoff, and the soil 

water holding capacity is used to calculate runoff; i.e., soil water in excess of the soil water 

holding capacity is routed to runoff. Therefore, soils with high water-holding capacities can store 

more water in the wet season and, in turn, sustain photosynthesis and evapotranspiration during 

the dry season (Figure 3(a)). On the other hand, soils with shallow rooting depths cannot hold 
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enough water to sustain photosynthesis and evapotranspiration during the dry season, which 

leads to soil water stress, stomatal closure, and ET and GPP reduction (Figure 3(b)).

Ecophysiological parameters for each plant functional type are derived from Biome-BGC 

values (White et al., 2000). We made some changes to these parameters (Table 2) by comparing 

the observed ET data to adjust the maximum stomatal conductance and canopy leaf interception 

parameters, because simulations based on the default parameters caused an overestimation of 

evapotranspiration.

2.2.3. Rooting depth determination

We used satellite-based ET seasonality and the TOPS terrestrial biosphere model to infer 

the suitable rooting depth for the TOPS simulation at each grid. Because rooting depth 

potentially affects ET seasonality during the dry season (see section 2.2.2), we can inversely 

estimate rooting depth using ET seasonality. For example, if the observed ET is high during the 

dry season, the ecosystem must have a deep rooting system to supply soil water in the absence of

rainfall (Figure 3(a)). Conversely, if the observed ET is diminished in the dry season, the 

ecosystem has a certain level of rooting depth (Figure 3(b)).

To find the appropriate rooting depth for the model, we used the Golden Section Search 

algorithm (Press et al., 1992) to minimize the RMSE between the observed and simulated ETs

(e.g., Kleidon and Heimann, 1998; Kleidon, 2004). Initially, we set the range of rooting depth 

from 0.1 to 10.0 m and executed until the algorithm found the rooting depth that minimizes the 

RMSE between the satellite-based and simulated ETs, using every 8-day ET variation from 2001 

to 2006. In this simulation, we found that, above a certain level of rooting depth, there is very 

little sensitivity to the seasonal ET variation because there is enough available water to sustain 
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vegetation growth in the dry season. Therefore, we set a standard to find the minimum rooting 

depth that does not impart any additional change in the model accuracy (RMSE) (<1%). We 

repeated this 30 times, until the rooting depth values converged.

2.3. Data

We used (1) flux tower observation data, (2) satellite-based data, (3) meteorological data, 

and (4) ancillary data. Table 3 lists the data used in the study and their purposes.

2.3.1. Flux tower observation data

We used flux tower observation data from 2000 to 2006, from 10 sites over the western 

United States (Table 1). The sites are located throughout California, Arizona, Oregon, and 

Washington. We obtained the Level 4 (gap-filled) weekly (8-day) ET and surface radiation 

observations from the Ameriflux website (http://public.ornl.gov/ameriflux). These data are used 

for (1) satellite data-based ET estimation (ET and Rad) and (2) model validation (ET). We 

obtained 1173 observation dates, including 435 for forest sites and 738 for non-forest sites.

2.3.2. Satellite-based time-variable data

We used an eight-day composite of the Moderate Resolution Imaging Spectroradiometer 

(MODIS)-based LST (Wan et al., 2002) and EVI (Huete et al., 2002) for the satellite-based ET

estimation and FPAR/LAI (Myneni et al., 2002) from the TOPS model from 2000 to 2006. The 

EVI is originally composited on a 16-day basis; we therefore assigned each 16-day composite 

EVI to its two corresponding eight-day periods. For the satellite-based ET evaluation processes 

at the flux sites, we used MODIS 1-km resolution American Standard Code for Information 
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Interchange (ASCII) subset data sets, each of which consisted of 7 by 7 km regions centered on 

the flux towers for LST and EVI (Cook, 2004). At each time step, we averaged these values 

using the high-quality pixels (with the mandatory quality assurance (QA) flag being good in the 

QA data). If none of the 49 values was of high enough quality, we treated the period as missing. 

For the flux-site model evaluation processes, we used the LAI and FPAR (for the TOPS model) 

and LST and EVI (for satellite-based ET estimation) from the MODIS 1-km ASCII subset data, 

and missing data were replaced by a 2001 to 2006 average calculated from high-quality pixels. 

For the spatial analysis, we used original 1-km spatial resolution data from MODIS LST and EVI 

for satellite-based ET estimation and FPAR/LAI for TOPS inputs; for data cleaning, all data 

were filled using averaged 8-day data calculated from 2001 to 2006 at each grid point if the QA 

flags were not good.

2.3.3. Meteorological data

We used daily gridded climate data from 1996 to 2006 for the analysis. Daily maximum 

and minimum temperatures were produced by kriging, using point observations from the 

National Climatic Data Center (NCDC) data (Jolly et al., 2005). Vapor pressure deficit (VPD) 

was calculated by assigning the daily minimum temperature as the dew point temperature 

(Campbell and Norman, 1998). Daily precipitation fields are derived from real-time analysis of 

U.S. daily precipitation by the Climate Prediction Center at quarter degree resolution (available 

at http://www.cpc.ncep.noaa.gov/products/precip/realtime/retro.shtml). Radiation data are from 

the Surface Radiation Budget project (SRB, derived from the Geostationary Operational 

Environmental Satellite), which relies on satellite observations and on an atmospheric radiative 

transfer model (Pinker et al., 2002). Missing radiation values were filled by long-term means.
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We used the 8-day average of radiation as an input for the satellite-based ET estimation and all 

daily climate fields as TOPS model inputs.

2.3.4. Static data

The static data consist of land cover, soil properties, and elevation. Land cover data are 

derived from MODIS Land Cover data (MOD12Q1; Friedl et al., 2002) and are used as inputs 

for the satellite-based ET estimation and TOPS. Using a dataset of 1-km gridded soils from 

Pennsylvania State University (based on the State Soil Geographic Database, STATSGO, and 

created by Miller and White (1998)), we generated soil depth and percent sand, silt, and clay, as 

required by TOPS. For each 1-km pixel, the input data consisted of texture, rock fraction, and 

percentages of sand, silt, and clay of 11 soil layers. Depth to bedrock was also included. Thus, 

depth could be obtained either from the depth to bedrock or by examining the 11 layers. We 

applied the same methods as White and Nemani (2004) to produce soil texture and rooting depth 

from the STATSGO data for use as TOPS inputs. First, for each pixel, we extracted only those 

layers having a depth less than or equal to the recorded depth to bedrock. For these layers, we 

then extracted, where available, the sand, silt, clay, and texture information. Next, we calculated 

the layer-weighted percentage of sand, silt, and clay information. Finally, we calculated the rock 

fraction-corrected layer-weighted soil depth. We used HYDRO1K data 

(http://edc.usgs.gov/products/elevation/gtopo30/hydro/index.html) for elevation data.

3. Experiment

The study consisted of two steps: point and spatial analysis for model simulation and 

evaluation. First, we tested the satellite-based ET, estimated rooting depth, and simulated ET 
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seasonality at four flux sites in California. Second, we extended the analysis to all of California 

to estimate spatial patterns of rooting depth and seasonal ET variations. We also assessed the 

impacts of rooting depth refinements on simulated GPP. For all simulations, we used two 

different rooting depth settings: STATSGO (soil survey-based; section 2.3.4.) and optimized 

rooting depths (section 2.2.3).

First, we tested the performance of the satellite data-based and model-based ET 

estimations at four flux sites in California. To do so, we tuned the SVM model using satellite-

based EVI and LST, fluxsite-based radiation, and land cover as inputs, and we observed ET as 

the output. Using the established model, we applied satellite-based data (LST, EVI, Rad, and 

LC) to obtain the continuous 8-day averaged ET from 2001 to 2006. The estimated ET and 

TOPS ecosystem models are used to infer the rooting depth at each flux site based on the 

algorithms described in section 2.2.3. We then ran the model using STATSGO, optimized the 

rooting depth for model testing, and analyzed the impacts of different rooting depth settings on 

simulated ET seasonality.

Second, we performed spatial analysis for California. We started by obtaining the spatio-

temporal variations of ET based on the satellite-based ET estimation. Then, using the satellite-

based ET and TOPS terrestrial ecosystem model, we estimated the rooting depth in each grid. 

Last, we ran the model using STATSGO and optimized rooting depths and analyzed the 

sensitivity of ET and GPP seasonality to the rooting depth settings. For the simulations, we ran 

the model from 1996 to 2006, and only the outputs from 2001 to 2006 were used for the analysis.

4. Results & Discussion

4.1. Point analysis
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4.1.1. Evaluation of satellite-based ET estimation

We used ET observations from 2000 to 2006 at 10 Ameriflux observation sites to develop 

the model; we thus obtained SVM kernel parameters of C = 1.072, σ = 7.464, and ε = 0.203, with 

a correlation coefficient of R2 = 0.76 and a RMSE of 0.49 mm H2O/day between the observed 

and satellite-based ETs. Compared with Yang et al. (2006), we obtained a similar R2 value but a 

smaller RMSE value, which was probably due to our model, which was more spatially specific 

than their original spatial scale.

Detailed evaluations of the satellite-based ET time variations revealed its promising 

capability to estimate spatio-temporal ET variations in the study area (Figure 4). For example, at 

Blodgett Forest site, Vaira Ranch, and Tonzi Ranch, both seasonal and interannual ET variations 

were captured well by the satellite-based ET estimation with high R2 and small RMSEs (R2 =

0.93 and RMSE = 0.43 mm H2O/day for Blodgett Forest, R2 = 0.76 and RMSE = 0.34 mm

H2O/day for Tonzi Ranch, and R2 = 0.83 and RMSE = 0.37 mm H2O/day for Vaira Ranch). In 

the dry open shrubland site of Sky Oaks, because seasonal variations in ET were small, the 

accuracy of the model is lower than the other sites (R2 = 0.35 and RMSE = 0.47 mm H2O/day). 

4.1.2. Rooting depth estimation and its impacts on ET seasonality

Optimization of the rooting depth based on the satellite-based ET and the TOPS model  

estimates deeper rooting depths than STATSGO does, with smaller RMSEs between the 

satellite-based and model-based ETs (Table 4). This suggests the importance of refining rooting 

depths in water cycle simulations. Models based on optimized rooting depths successfully 

simulated ET seasonal variations, providing data that are consistent with satellite-based 

estimation and show small errors. Due to large differences between the optimized and 
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STATSGO rooting depths, the improvement of the simulated ET seasonality at Blodgett Forest 

was drastic. For the other sites, although the differences between the optimized and STATSGO 

rooting depths were not as large, improvements in the seasonal ET simulations were still seen in 

the middle to end of the growing season.

Field observations also support that the estimated rooting depths are reasonable. For 

example, deep rooting depths have been reported for the Blodgett Forest site (at least 2 m; 

Laurent Misson, personal communications). In addition, 0.5 m of soil depth is reported at Vaira 

Ranch site (Ryu et al., 2008).

The point-based analysis suggests the importance of rooting depth refinement in the ET 

simulations. The optimization processes produced more reasonable rooting depth and simulated 

ET estimations. From the results of the point-scale analysis, we expect spatial application of the 

method to significantly improve the seasonal ET simulations. 

4.2. Spatial Analysis

4.2.1. Rooting depth and impacts on ET

Spatial patterns of optimized rooting depth, as estimated from the satellite-based ET and 

TOPS ecosystem model, show very clear spatial variations that are dependent on vegetation type 

(Figure 5). Deep rooting depths were estimated across the whole forest region in the northern 

part of California (3-5 m) and in some cropland regions of the central valley (> 5 m), whereas

most of the southern regions show shallow rooting depths. The forest regions are generally 

characterized by dry summers with high ET (e.g., Figures 2 and 4); therefore, deep rooting 

systems are required to sustain peak ET in the summer, as shown in the point analysis. The 

central valley is basically irrigated cropland; because our model does not include irrigation 
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effects, the deeper rooting depths are estimated to sustain high ET during the summer, which is 

enabled by the water supply from irrigation. 

Compared to the STATSGO-based rooting depth estimations, our estimated rooting 

depths are much deeper in the northern forests and the central valley cropland regions (Figure 6). 

For example, the STATSGO-based rooting depth is around 1 m throughout the forest regions, 

whereas this study estimated them to be at least 2-3 times deeper. These results suggest that 

reassessment of rooting depth is beneficial, and the impacts of the estimation on the ability to 

account for ecosystem processes should be significant.

The choice of rooting depth settings significantly affect the RMSEs between the modeled 

and satellite-based ET values, and the optimized rooting depth improved the model performance 

in terms of ET seasonality (Figure 7). Compared with the simulation based on STATSGO 

rooting depths, we found that RMSEs decreased significantly wherever estimated rooting depths 

were significantly deeper than the STATSGO-based survey values. For example, the large 

RMSEs based on the STATSGO rooting depth settings across all the forest regions (> 1.2 mm

H2O/day) are greatly improved in our simulation based on optimized rooting depth (< 0.8 mm

H2O/day). 

Averaging the rooting depths in each land cover class shows the strong contrast in 

estimated rooting depths (Table 5). Evergreen needle-leaf forests have the deepest rooting depths

(3.1 ± 1.2 m), with Savanna classes also showing great depths (> 2.0 m). The rooting depth 

refinement also drastically improved ET estimation in evergreen needle-leaf forest regions, 

leading to a 40% reduction in the RMSE between satellite-based and model-based ET values. 

Improvements in ET estimations are also seen for other land cover classes, although none as 

drastic as evergreen needle-leaf forests.
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Monthly variations in the simulated and satellite-based ETs show that the simulation 

based on optimized rooting depth agrees very well with the satellite-based ET; however, the 

simulation based on the STATSGO rooting depth underestimated the summer ET in forest 

regions (Figure 8). The seasonal variations in satellite-based ET show increases in ET from 

spring to summer, with peaks in July. The simulated ET based on optimized rooting depth shows 

the same seasonal evolution in the northern forest regions; however, the simulation based on the 

STATSGO rooting depth shows a large decline after July. The sufficient soil water holding 

capability that comes with deeper rooting depths improved the model significantly. 

4.2.2. Impacts on simulated GPP seasonality

Due to tightly coupled effects of ET and GPP, optimization of rooting depth affects the 

simulated GPP seasonality similar to the way ET does, especially in the summer, and annual 

total GPP was greatly increased (50-100%) in the forest regions by the refinement of rooting 

depth (Figure 9). In the STATSGO rooting depth simulation, summer GPP values are 

underestimated due to insufficient water availability with the shallow rooting depths in the forest 

regions. In contrast, the model based on optimized rooting depth simulated a higher GPP in 

summer that was consistent with the satellite-based ET seasonality. This increased annual GPP 

value in the forest regions and some coastal regions resulted in improved carbon cycle 

simulations.

4.3. Model limitation and further improvements
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Although the rooting depth optimization process improved the spatial patterns of rooting 

depths and water and carbon cycle simulations in California, potential limitations and further 

improvements should be noted. 

First, the assumption of a one-box soil water layer in TOPS tends to overestimate the soil 

water evaporation, underestimate the runoff due to ignoring vertical water transport, and 

underestimate the water stress for stomatal conductance due to the lack of vertical distribution of 

water and roots. However, these effects are not important in this study because (1) the potential 

overestimation of soil water evaporation due to a single soil water layer does not have a large 

impact in dense forests, (2) because runoff occurs mostly in the rainy season, the impact on our 

rooting depth estimation is small because it is largely determined by the amount of precipitation

and the length of the dry season, and (3) underestimation of the water stress for stomatal 

conductance and GPP due to the lack of vertical distribution of water and roots may be partially 

compensated for by hydraulic redistribution (Caldwell et al., 1998; Brooks et al., 2002). In 

addition, the credibility of estimated rooting depth and modeled ET are guaranteed by validations 

at the flux sites.

Second, the current water cycle model ignores the lateral water flow due to topography 

and potentially overestimates vegetation water stress and rooting depths. However, our method 

estimated appropriate rooting depths that were consistent with ground observations, and it 

greatly improved the simulated ET seasonality. We therefore conclude that these effects will not 

substantially affect the rooting depth estimation or model accuracy.

Third, a lack of irrigation effects on the water cycle model led to an estimation of deeper 

rooting depth in the central valley cropland regions. Development of an irrigation module is 

required for accurate modeling of water stress in these regions. Currently, the model results 
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supply the amount of water that would be required to support vegetation growth during the 

growing seasons.

5. Conclusion 

In this study, we estimated rooting depths in California using satellite-based ET and an 

ecosystem model by minimizing differences between the model-based and satellite-based ET 

values and then analyzing the impacts on the accuracy of the simulated ET seasonality. Large 

differences were found between the optimized and soil survey (STATSGO)-based rooting depths 

in the northern forest regions. In these areas, the significantly deeper rooting depths (>3 m) 

estimated in the study were able to successfully reproduce the satellite-based ET seasonality with 

a peak in the summer, whereas the shallow rooting depths based on STATSGO (<1.5 m) could 

not sustain high ETs in summer. Over the grass and shrub regions in central and southern 

California, estimated rooting depths were similar to those reported by STATSGO, probably due 

to the shallow rooting depths in these ecosystems. Our analysis suggests that accurately

estimating rooting depth is important for ecosystem modeling and that satellite-based data can 

help to constrain the spatial variability of rooting depths to improve water and carbon cycle 

modeling.

This study has two potential implications for the use of satellite-based data in terrestrial 

ecosystem modeling. First, we showed an example of the powerful application of satellite-based 

products to improve a terrestrial biosphere model. The satellite-based products that are 

independent of the model are useful in constraining the ecosystem models, as was also shown by 

Yang et al. (2007). Second, refinement of the water cycle model in this study also improved 
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carbon cycle modeling, illustrating that improving the water cycle model is an important step for 

accurate carbon cycle modeling. 
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Tables:  

Table 1. Flux sites used in this study.

Site name State Longitude Latitude Veg. class References
Blodgett Forest CA -120.6328 38.8953 ENF Goldstein et al. 2000

Misson et al. 2006
Vaira Ranch CA -120.9507 38.4067 SV Baldocchi et al. 2004
Tonzi Ranch CA -120.996 38.4316 SV Baldocchi et al. 2004
Sky Oaks Young Stand CA -116.623 33.3772 SH Stylinski et al. 2002
Sky Oaks Old Stand CA -116.623 33.3739 SH Stylinski et al. 2002
Sky Oaks CA -116.640 33.3844 SH Lipson et al. 2005
Audubon grasslands AZ -110.5104 31.6000 GR -
Metolius old ponderosa pine OR -121.6224 44.4992 ENF Law et al. 2004
Metolius first young aged pine OR -121.5668 44.4372 ENF Law et al. 2004
Wind River WA -121.9519 45.8205 ENF Shaw et al. 2004

Abbreviations of vegetation classes: Evergreen needleleaf forest (ENF), Savanna (SV), Shrubland (SH), and 
Grassland (GR).

Table 2. Ecophysiological parameters for TOPS model used in this study.

Parameter Unit ENF SV GL/CR SH
Maximum stomatal conductance mm s-1 0.002 0.002 0.002 0.0012
VPD: start of conductance reduction Pa 600 600 600 600
VPD: end of conductance reduction Pa 3000 3000 3000 3000
LWP: start of conductance reduction MPa -0.1 -0.1 -0.1 -0.1
LWP: end of conductance reduction MPa -1.5 -1.5 -1.5 -1.5
Canopy water interception coefficient Fraction LAI-1 0.001 0.001 0.001 0.001

Abbreviations of parameters vapor pressure deficit (VPD) and leaf water potential (LWP).
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Table 3. Time-variable data sets used in this study.

Source Parameter Data source or method Purpose
Ameriflux data ET - satellite-based ET

Rad - satellite-based ET
Satellite-based data LST MOD11A2; Wan et al. (2002) satellite-based ET

EVI MOD13A2; Huete et al. (2002) satellite-based ET
LAI/FPAR MOD15A2; Myneni et al. (2002) TOPS simulation

Meteorological data Temp CPC/NCDC data TOPS simulation
Prec CPC data TOPS simulation
VPD Campbell and Norman (1998) TOPS simulation
Rad Satellite-based (GCIP) satellite-based ET & TOPS simulation

ET, Rad, LST, EVI, LAI, Temp, Prec, VPD, Rad refer to evapotranspiration, surface solar radiation, land surface 
temperature, enhanced vegetation index, leaf area index, temperature, precipitation, and vapor pressure deficit, 
respectively. 

Table 4. Estimated and STATSGO rooting depths at flux sites, California. Numbers in 
parentheses are the RMSE (mm H2O/day) between satellite-based and simulated 8-day averaged 
ET from 2001 to 2006.

Site STATSGO Optimized
Blodgett Forest 1.3 m (1.20) 3.7 m (0.43)
Tonzi Ranch 0.4 m (0.46) 0.7 m (0.34)
Vaira Ranch 0.4 m (0.40) 0.5 m (0.37)
Sky Oaks (Young) 0.4 m (0.54) 2.0 m (0.47)

Table 5. Estimated and STATSGO rooting depths (m) and RMSEs between satellite-based and 
model-based ET (mmH2O/day) in each land cover class.

Land Cover Estimated Rooting Depth (RMSE) STATSGO Rooting Depth (RMSE)
Evergreen Needleleaf 
Forest

3.1±1.2 m (0.67) 0.9±0.3 m (1.10)

Open Shrubland 0.6±0.5 m (0.72) 1.0±0.5 m (0.73)
Woody Savanna 2.0±1.6 m (0.65) 0.8±0.4 m (0.80)
Savanna 2.3±1.3 m (0.72) 1.0±0.4 m (0.78)
Grassland 1.4±1.0 m (0.77) 0.9±0.5 m (0.80)
Cropland 2.6±1.5 m (1.02) 1.4±0.1 m (1.02)

Only the land cover classes cover over 20,000 km2 are selected.

Figures:

Figure 1. Land cover of the study area with flux observation sites in California based on MODIS 

land cover data (MOD12Q1; Friedl et al., 2002) in year 2001. Diamonds (◆) show the locations

of flux observation stations used in the study.
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Figure 2. (a) Annual and (b) seasonal patterns of precipitation based on US daily precipitation 

real-time analysis from the Climate Prediction Center, averaged over 2001-2006. MAM, JJA, 

SON, and DJF denote March to May, June to August, September to November, and December to 

February, respectively.

Figure 3. Conceptual image of the method of determining rooting depth. (a) In the region with a 

long dry season, vegetation utilizes the water stored in the wet season. (b) In the case of a 

shallow rooting depth setting, soil water is dried out in the mid and end dry seasons, which 

suppresses evapotranspiration and gross primary production. In the case of deep rooting depth, 

stored water in the wet season can sustain the vegetation growth throughout the entire dry season.

Figure 4. Temporal variations in observed (gray) and satellite-based (black) evapotranspiration 

at four flux sites in California.

Figure 5. Model-simulated (based on optimized (black line) and STATSGO rooting depths

(gray)) and satellite-based (diamond) ET variations from 2001 to 2006. 

Figure 6. Spatial patterns in (a) optimized and (b) STATSGO rooting depths in California.

Barren and urban areas are shown in gray.

Figure 7. Root mean square error of 8-day ET variations obtained by TOPS under (a) optimized 

and (b) STATSGO rooting depth settings and satellite-based ones. Six years of results are used, 

from 2001 to 2006. Barren and urban areas are shown in gray.
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Figure 8. Seasonal ET variations in TOPS under optimized rooting depth (top), and TOPS under 

STATSGO rooting depths (middle), and SVM-based estimations (bottom). Results from March, 

May, July, and September are shown by averaging six years of data, from 2001 to 2006. Barren 

and urban areas are shown in gray.

Figure 9. Percentage difference of annual GPP between simulations with STATSGO rooting 

depth and optimized rooting depth, calculated as 100 × (Optimized – STATSGO) / STATSGO. 

Annual GPP is calculated from the 2001-2006 average. Barren and urban areas are shown in gray.
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